Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 23(6): 1203-18, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23237953

RESUMO

Fenestral and stomatal diaphragms are endothelial subcellular structures of unknown function that form on organelles implicated in vascular permeability: fenestrae, transendothelial channels, and caveolae. PV1 protein is required for diaphragm formation in vitro. Here, we report that deletion of the PV1-encoding Plvap gene in mice results in the absence of diaphragms and decreased survival. Loss of diaphragms did not affect the fenestrae and transendothelial channels formation but disrupted the barrier function of fenestrated capillaries, causing a major leak of plasma proteins. This disruption results in early death of animals due to severe noninflammatory protein-losing enteropathy. Deletion of PV1 in endothelium, but not in the hematopoietic compartment, recapitulates the phenotype of global PV1 deletion, whereas endothelial reconstitution of PV1 rescues the phenotype. Taken together, these data provide genetic evidence for the critical role of the diaphragms in fenestrated capillaries in the maintenance of blood composition.


Assuntos
Proteínas Sanguíneas/metabolismo , Capilares/fisiologia , Capilares/ultraestrutura , Permeabilidade Capilar , Proteínas de Transporte/metabolismo , Endotélio Vascular/fisiologia , Endotélio Vascular/ultraestrutura , Proteínas de Membrana/metabolismo , Animais , Proteínas de Transporte/genética , Cavéolas/fisiologia , Membrana Celular/metabolismo , Endotélio Vascular/citologia , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Enteropatias Perdedoras de Proteínas/fisiopatologia
2.
Arterioscler Thromb Vasc Biol ; 32(11): 2644-51, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22982464

RESUMO

OBJECTIVE: Vasa vasorum are angiogenic in advanced stages of human atherosclerosis and hypercholesterolemic mouse models. Fibroblast growth factor-2 (FGF-2) is the predominant angiogenic growth factor in the adventitia and plaque of hypercholesterolemic low-density lipoprotein receptor-deficient/apolipoprotein B(100/100) mice (DKO). FGF-2 seems to play a role in the formation of a distinct vasa vasorum network. This study examined the vasa vasorum structure and its relationship to FGF-2. METHODS AND RESULTS: DKO mice treated with saline, antiangiogenic recombinant plasminogen activator inhibitor-1(23) (rPAI-1(23)), or soluble FGF receptor 1 were perfused with fluorescein-labeled Lycopersicon esculentum lectin. Confocal images of FGF-2-probed descending aorta adventitia show that angiogenic vasa vasorum form a plexus-like network in saline-treated DKO similar to the FGF-2 pattern of distribution. Mice treated with rPAI-1(23) and soluble FGF receptor 1 lack a plexus; FGF-2 and vasa vasorum density and area are significantly reduced. A perlecan/FGF-2 complex is critical for plexus stability. Excess plasmin produced in rPAI-1(23)-treated DKO mice degrades perlecan and destabilizes the plexus. Plasmin activity and plaque size measured in DKO and DKO/plasminogen activator inhibitor-1(-)(/-) mice demonstrate that elevated plasmin activity contributes to reduced plaque size. CONCLUSIONS: An FGF-2/perlecan complex is required for vasa vasorum plexus stability. Elevated plasmin activity plays a significant inhibitory role in vasa vasorum plexus and plaque development.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipercolesterolemia/metabolismo , Neovascularização Patológica , Vasa Vasorum/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Doenças da Aorta/tratamento farmacológico , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteína B-100 , Apolipoproteínas B/deficiência , Apolipoproteínas B/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/patologia , Colesterol na Dieta , Modelos Animais de Doenças , Fibrinolisina/metabolismo , Técnicas de Transferência de Genes , Proteoglicanas de Heparan Sulfato/metabolismo , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Placa Aterosclerótica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Ruptura Espontânea , Vasa Vasorum/efeitos dos fármacos , Vasa Vasorum/patologia
3.
Environ Health Perspect ; 120(9): 1252-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22609946

RESUMO

BACKGROUND: Obesity is a growing worldwide problem with genetic and environmental causes, and it is an underlying basis for many diseases. Studies have shown that the toxicant-activated aryl hydrocarbon receptor (AHR) may disrupt fat metabolism and contribute to obesity. The AHR is a nuclear receptor/transcription factor that is best known for responding to environmental toxicant exposures to induce a battery of xenobiotic-metabolizing genes. OBJECTIVES: The intent of the work reported here was to test more directly the role of the AHR in obesity and fat metabolism in lieu of exogenous toxicants. METHODS: We used two congenic mouse models that differ at the Ahr gene and encode AHRs with a 10-fold difference in signaling activity. The two mouse strains were fed either a low-fat (regular) diet or a high-fat (Western) diet. RESULTS: The Western diet differentially affected body size, body fat:body mass ratios, liver size and liver metabolism, and liver mRNA and miRNA profiles. The regular diet had no significant differential effects. CONCLUSIONS: The results suggest that the AHR plays a large and broad role in obesity and associated complications, and importantly, may provide a simple and effective therapeutic strategy to combat obesity, heart disease, and other obesity-associated illnesses.


Assuntos
Gorduras na Dieta/metabolismo , Fígado/metabolismo , Obesidade/genética , Receptores de Hidrocarboneto Arílico/genética , Tecido Adiposo/metabolismo , Animais , Peso Corporal , Dieta , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Modelos Animais , Obesidade/metabolismo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Toxicol Sci ; 126(2): 391-404, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22228805

RESUMO

Little is known of the environmental factors that initiate and promote disease. The aryl hydrocarbon receptor (AHR) is a key regulator of xenobiotic metabolism and plays a major role in gene/environment interactions. The AHR has also been demonstrated to carry out critical functions in development and disease. A qualitative investigation into the contribution by the AHR when stimulated to different levels of activity was undertaken to determine whether AHR-regulated gene/environment interactions are an underlying cause of cardiovascular disease. We used two congenic mouse models differing at the Ahr gene, which encodes AHRs with a 10-fold difference in signaling potencies. Benzo[a]pyrene (BaP), a pervasive environmental toxicant, atherogen, and potent agonist for the AHR, was used as the environmental agent for AHR activation. We tested the hypothesis that activation of the AHR of different signaling potencies by BaP would have differential effects on the physiology and pathology of the mouse cardiovascular system. We found that differential AHR signaling from an exposure to BaP caused lethality in mice with the low-affinity AHR, altered the growth rates of the body and several organs, induced atherosclerosis to a greater extent in mice with the high-affinity AHR, and had a huge impact on gene expression of the aorta. Our studies also demonstrated an endogenous role for AHR signaling in regulating heart size. We report a gene/environment interaction linking differential AHR signaling in the mouse to altered aorta gene expression profiles, changes in body and organ growth rates, and atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Benzo(a)pireno/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Miocárdio/metabolismo , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Peso Corporal , Crescimento , Coração/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Tamanho do Órgão , Reação em Cadeia da Polimerase , Receptores de Hidrocarboneto Arílico/metabolismo
5.
Circ Res ; 108(12): 1419-28, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21546607

RESUMO

RATIONALE: The antiangiogenic activity of rPAI-1(23), a truncated plasminogen activator inhibitor-1 (PAI-1) protein, induces vasa vasorum collapse and significantly reduces plaque area and plaque cholesterol in hypercholesterolemic low-density lipoprotein receptor-deficient/apolipoprotein B48-deficient mice. OBJECTIVE: The objective of this study was to examine rPAI-1(23)-stimulated mechanisms that cause vasa vasorum collapse. METHODS AND RESULTS: The rPAI-1(23) protein opposed PAI-1 antiproteolytic function by stimulating a 1.6-fold increase in plasmin activity compared with the saline-treated counterpart. The increased proteolytic activity corresponded to increased activity of matrix metalloproteinase-3 and degradation of fibrin(ogen), nidogen, and perlecan in the adventitia of descending aortas. PAI-1 activity was reduced by 48% in response to rPAI-1(23); however, PAI-1 protein expression levels were similar in the rPAI-1(23)- and saline-treated hypercholesterolemic mice. Coimmunoprecipitation assays demonstrated a novel PAI-1-plasminogen complex in protein from the descending aorta of rPAI-1(23)- and saline-treated mice, but complexed PAI-1 was 1.6-fold greater in rPAI-1(23)-treated mice. Biochemical analyses demonstrated that rPAI-1(23) and PAI-1 binding interactions with plasminogen increased plasmin activity and reduced PAI-1 antiproteolytic activity. CONCLUSIONS: We conclude that rPAI-1(23) causes regression or collapse of adventitial vasa vasorum in hypercholesterolemic mice by stimulating an increase in plasmin activity. The rPAI-1(23)-enhanced plasmin activity was achieved through a novel mechanism by which rPAI-1(23) and PAI-1 bound plasminogen in a cooperative manner to increase plasmin activity and reduce PAI-1 activity.


Assuntos
Inibidores da Angiogênese/farmacologia , Fibrinolisina/metabolismo , Hipercolesterolemia/metabolismo , Plasminogênio/metabolismo , Serpina E2/farmacologia , Vasa Vasorum/metabolismo , Animais , Fibrinolisina/genética , Hipercolesterolemia/genética , Hipercolesterolemia/patologia , Camundongos , Camundongos Knockout , Plasminogênio/genética , Vasa Vasorum/patologia
6.
Circ Res ; 104(3): 337-45, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19122176

RESUMO

Plaque vascularity has been implicated in its growth and stability. However, there is a paucity of information regarding the origin of plaque vasculature and the role of vasa vasorum in plaque growth. To inhibit growth of vasa vasorum in atherogenic mice and assess its effect on plaque growth, we used a truncated plasminogen activator inhibitor (PAI)-1 protein, rPAI-1(23), that has significant antiangiogenic activity. Female LDLR(-/-)ApoB-48-deficient mice fed Paigen's diet without cholate for 20 weeks received rPAI-1(23) treatment (n=21) for the last 6 weeks. Plaque size and vasa vasorum density were compared to 2 controls: mice fed Paigen's diet and treated with saline for the last 6 weeks (n=16) and mice fed Paigen's diet until the onset of treatment (n=14). The rPAI-1(23) treatment significantly reduced plaque area and plaque cholesterol in the descending aorta and plaque area in the innominate artery. Measurements of reconstructed confocal microscopy images of vasa vasorum demonstrate that rPAI-1(23) treatment decreased vasa vasorum area and length, which was supported by microCT images. Confocal images provide evidence for vascularized plaque in the saline-treated group but not in rPAI-1(23)-treated mice. The increased vessel density in saline-treated mice is attributable, in part, to upregulated fibroblast growth factor-2 expression, which is inhibited by rPAI-1(23). In conclusion, rPAI-1(23) inhibits growth of vasa vasorum, as well as vessels within the adjacent plaque and vessel wall, through inhibition of fibroblast growth factor-2, leading to reduced plaque growth in atherogenic female LDLR(-/-)ApoB-48-deficient mice.


Assuntos
Inibidores da Angiogênese/fisiologia , Aterosclerose/prevenção & controle , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Vasa Vasorum/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Animais , Apolipoproteína B-48/genética , Artérias/patologia , Aterosclerose/patologia , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Microscopia Confocal , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/fisiologia , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Receptores de LDL/genética , Proteínas Recombinantes/farmacologia , Vasa Vasorum/crescimento & desenvolvimento , Vasa Vasorum/patologia , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...